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o

TECHENICAL MEMORANDUM 1298

ON THE PROBLEM OF GAS FLOW OVER AN INFINITE CASCADE
USING CHAPLYGIN'S APPROXIMATION*

By G. A. Bugaenko

1. Some well-known results of Chaplygin's method (referencé 1)
are first presented, For the adiapatic law of the state of the gas

when p }{DY, the following relations hold:
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where p 1is the gas pressure, P 1is the gas density, V 1is the
modulus of veloeity, py and pp are the values of p and p at

the critical point of the flow at which the veloclty becomes Zero,
k 1is the coefficient of proportionality, 7 1s the ratio of specific
heats, and o and B are constants.

(1.1)

If the angle 06O Dbetween the velocltiy and the x-axis and the
magnitude T equal to V2/2a are considered, then, as was shown by
Chaplygin, the equatlions of gas motlon assume the form

(1.2)

where @ 1s the yelocity potential and ¥ is the stream function.
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Chaplygin reduced these equations to the .very simple form

39 _ %
oV o9
(1.3)
gg = e ..‘]_' §§
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by introducing the new variable O and the constant K defined by
the formulas

,
o J O

T2

K = 1-(2p+1)7T

(l_T)ZB+l

(1.4)

Chaplygin showed that for velocities far removed from the velocity of
sound, the magnitude K 1is approximately unity and eguations (1.3)
can be integrated by assuming K equal to 1. For K = 1, these
equations go over into the conditions of Cauchy-Riemann; hence,

Ww=06 + 10 will be an analyticel function of the complex variable

f =9 + iv. :

The equation for the elementary vector along a streamline in
the approximate treatment has, as is known (reference 3), the form

_B -B
. — 1+ (1-Too) 1 - (1-%op)
dz = (ael? + vel®)ay a = =2 , b= z
2N 20T, 2 N 20T,
(1.5)
The complex pressure is given by the equation (reference 3)
PO % 1D -
Y+ 1x = =2 (07 - 049 + poa -Tm2)6+lj az (1.6)

2. The steady potential flow of a gas through an infinite
cagcade according to-the well-known scheme of Kirchhoff with
separations of the Jet 1s next considered. The vanes of the cas-
cade will be assumed to be plane (fig. 1).

Velocity of the gas in the flow at infinity is denoted by
Vo1 and 1ts angle with the x-axis by . §oy; veloclty of the gas iIn

the jet at infinity i1s denoted by Voo and its angle with the
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x-axis by 'sz. The angle 6 between the velocity vectors and the
x-axis lles within the range -2r<6<0. '

' The veloclity field of the flow repeats 1tse1f for each dis-
placement by the pitch of the cascade, that is, by the vector he'ix

The condition of constancy of the mass flow for éteady flow of
the gas gives : '

Q=-fe] Vop b 8in (A + Bo3) = Aoy Gp 1 (2.1)

where Py 1is the density of the gas at infinity in the flow,. pgp

ig the denslty of the gas at iInfinity in the jet, and n 1is the
width of the gas Jet at Infinity.

By making use cf expressions (1.1) for p, equation (2.1) can be
represented in the form

n Wnlz P ( szz)ﬁ
- Vo3 aliacr sin (A + in) = Voo I l—-?cz-._ (2.2)

The behavior of the function f = 9 + iy in the z-plane of the
gas flow is now considered. For simplicity, the function f is
assuned equal to zero at the critical point O of the flow (fig. 1).
From the relation

do = gg ds = Vg ds

it follows that on moving along the streamline V = 0, the function
¢ varies monotonically from -« at the point E (infinity in the
flow) to += at the point C (infinity in the jet) and passes
through the zero value at the critical point 0 where the stream-
line branches. The value of the potential f = ?Af iy at the
critical point O' displaced by the period he~ relative to

the point O 1s found and (fig. 1)

e(0") = j Vsds=jvsd9+j Vg ds + j Vg ds
cMM'O! oM MM M'O!

where MM' 1is a cut parallel to the axis of the cascade.
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The first and last integrals mutually cancel and therefore
as MM' approaches infinity in the flow; the following équation 1s
obtained: :

$(0') = Vpy b cos (A + Q;i) ' _ (2.3)

Furthermore, from the relation

dq
ay = 5o

where 49 1is the quantity of gas flowing in unit time between
infinitely near streamlines, it follows that on being displaced
by the pltch of the cascade the function VY recelves an increment
equal to Q/Do. Hence,

ey 2P
VD -5 - - ( - ‘é‘i’) BV, sin (A + g,) (2.4)

In this manner, the f-plane with double-sided cuts along the
half-gtraight lines parallel to the axis of reals (fig. 2) corresponds
to the region of the gas flow (fig. 1). All the cuts, because of the
ruile by which the cascade was constructed, are obtalned from the
initial one (the positive ¢ -axis) by simultaneous displacement along
verticals and horizontals at distances that are multiples of Q/po

and V_; h cos (A + le), respectively.

Because W= ¢ + 10 1is an analybic function of f = ¢ + 1V,
the problem mey be solved by relating these functions with the aid
of a parsmeter that varies 1n the upper semlcircle of unit radius,
as in the Levi-Civita method.

By considering the rectilinearlity of the cuts in the f-plane,
the analytic function f(t) 1s found, which brings about the con-
formel transformation of the f-plane into the semicircle +. In the
t-plane, the flow of an 1deal fluld about the boundary of the semi-
circle 'is constructed. For this purpose, sources and vortices of
atrengths and intensities are located, as shown in figure 3, at the

points to, and Em’l that are symmetrical with respect to the circle
and at the mirror reflection of these points in the diameter, that

is, at the points %o and te Y. At the origin of cocrdinates we
place a gink of strength 2q (end a similar sink at infinity).
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In the constructed flow in the t-plane; the upper semicircle of
unit radius and the diameter of the semicircle are, of course, stream-
lines so that the stream.functlon vV maintains a constant value at
the boundary of the upper semicirclé +t; in the f-plane, this
boundary will correspond to straight cuts. The complex potential
of the constructed flow will have the form.

£(t) = E'}r'{ [(‘Y + 19) log (t - te) + (-7 + 1q) log (t - %>+

(-Y + 1g) Tog (t = B) + (Y + 1a) log (t i) - 2iq log "b:] + constant

or

2 [eva s i_)_
f{t) = = [kY + %q) log (t + 5 - 2™

(W - iq) log (t + % - Zﬁ)] + congtant (2.5)

where Y 1s the Intensity of the vortex and gq is the strength of

the sources, and
1 1
M-z(too'*'ﬁ)

The arbitrary constant in equation (2.5) is chosen so that
£{t) Dbecomes zero at a certaln point + = eei, the position of
which will be subsequently determined.

Because the logarithm has multiple values, the upper semicircle
of the t-plane will correspond to an f-plane with an infinite number
of straight cuts V¥ = kg(k = 0, 1, 22,...), where ¢ changes from
kY to +w, as easily follows from equation (2.5) by substituting
t = el® (the arc of the semicircle) and t = t; where +t; 1is the

real amount of the interval (-1, +1), the diameter of the semicircle.

In this msnner, the function (2.5) establishes a conformal
mapping of the upper semicircle of the t-plane on the f-plane with
the double-sided cuts represented in figure 2.

The function (2.5) is used in the work of N. I. Akhiezer
(reference 2) where it is obtained by successive conformal mappings:
the f-plane on the half plane, the half plane on the unit circle,
and finally the ¢ircle on the upper semicircle.
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The point 't = O is carried by the transformation (2.5) into
f = 4o ‘g0 that the radii AC and BC go over into the infinite
gsegments (figs. 2 and 3). The conformal property of the transfor-
mation breaks down at the points t = -1, t = +1, and t = el €
(the point ele corresponds to the origin of the double-sided cut
in the f-vlane). The condition 4f/dt = 0 for t = el€ gives

r+14 7 -1g (2.6)
cos ¢-M cos €-M

In order to obtain the elements of the motion, an expression for
the derivative df/dt is required that is represented in the form

ar _ g __ (t-el€)(t-e7l€)(s-t7h) (2.7)
At 7 (bete) (bt ™T) (b-To) (t-Foo 1) '

The quantities 7 and q are next determlined. When a point in
the z-plane of the gas flow is displaced by the pitch of the
cascade he~!M, the point t, corresponding to the point in the z-plane,
goes over from one sheet of the Riemann surface to the next, passing
once around the point E (t = tb), as a result of which the function
f(t) receives an increment 7 + iq, as follows from equation (2.5).
Because the corresponding increments of the functions ¢ and V¥
are equal to Vo h cos (N + @) and Qfpy, respectively, the

following equations are obtained:

7 = Gy h cos (A + boo7 )

2\B (2.8)
Vooy
q:-(l-?‘—-) Va,lhsin (>\+Qool)

From the expression for 7, it is evident, among other things,
that 7y = O corresponds to the case where the approaching flow has a
veloclty at infinity perpendicular to the axis of the cascade.

3. The function w(t) 1is next determined. The function
W =6 + 10 1s regular within the semicircie +t and has the following

properties:

1. A%t the point O(t = el€), the real part of the function w
has a discontinuity, esqual to =, because of the branching of the
streamline. On the arc AQ +the angle 6 1is equal to -m and on
the arc OB it is equal to zero.
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2. On the real diameter of the semicircle, the function
w(t) = 6 + 10 1is real because its imaginary part O =0 on the
~ free Jets where T =T 2 :

3. At the origin of coordinates t = O, the function w(t)
is equal %o 8o because at infinity in the Jet O =0 and

8 = 9@
From the preceding discussioh, it follows that the function

w(t) admits of analyticel continuation in the lower semicircle and
may be obtained by the Schwarz formula. Thus 5

. € o .
1 el? 4 ¢ 1 el 4 ¢ . el€ g '
w(t) = s fe 19 ae = 50 |- 'e—i—ca'—_—t a9 = 1 log L woic (3.1)
Itl = 1 ¢

that branch of the logarithm being chosen that is equal to 1€ for
t = 0. If the third property is used from equation (3.1) for t = O,
it is found that € = —6,;,,2. The value of to 1s obtained from

equation (3.1) by meking use of the value of the velocity at infinity
in the stream

l - tw exp 19052
8XpP 1fxp - tw

W(tew) = By + 1057 = 1 log

whence (reference 2)

b ChOgq - co8 (8x] - 6xp)
|t \/chO o - cos (eool + 6002) > _
a - (3.2)
8hOyy sin 645 .
arg to = arc tg ChOq) €08 @5 - CO8 gy )

The pressure of the gas on a blade of the cascade 1s then com- .
puted. On the forward side of the plate, which 1s a streamline, the
pressure is obtained by equation (1.6) where V., 1s the velocity

in the stream.

The back side of the plate is in the gas at rest ‘where the
pressure is constant and equal to

- - T B+1
P =Dy (1-T,,)
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If the fact that along a stréamiine dgp = df 1s considered, a
- formule 1s obtained for the complex pressure in the form

pn V. - _
Y+1X;__Q§,__-‘_’_°Z_f(e..-1w_e.-1w) ar

or

on ¥ _
Y-i}c:-.-o—._z“—zf(ei“’ -ei‘”)%%dt (3.3)

where the integration 1s taken over the upper semicircle of the
t-plane in the clockwise direction. By considering that after
analytical continuation in the lower semicircle the function w(t)
agsumes conjugate values at conjugate points, the following relation
is obtained:

o, ¥, ' ,
Y - 1% = - __0_2_032_ f elw(t) g_fc' dt (3.4)
It] =1

where the integration is taken over the entire arc of the unilt
circle in the counterclockwise directiom.

Substituting the value of df/dt from equation (2.7) in
equation (3.4) gives

- iX = - Pl Y2 '1u>(t)l (t-0l€) (t-e~1€) (£-t"1)at
T J 0 g D e ) )

The function under the integral sign in equation (3.5) has
three poles, t = tey t = te, and © = 0; all of which lie within the

unit circle, The residues of the function at these points are,
respectively,

(t o= eiC ) (teo - e-iﬁ)

— eXp iqx

(o - To) (b - Eon™t) !

(B - 01€) (T - €71€)

—— —— exp j_u-_)ml
R - ta) (B - tort)

~eXp iqxz
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From equation (2.6), however, it follows that

_ i€ ]
(bo- 1) (b= o7i)
to- T (e - 200 21

Hence, the residues may be represented in the form

%EH exp(16,) ~0g7)

- z—é—;]-im exp(ieml +°ml)

- eXp 1i0«p
From equation (3.5), applying the theorem on residues gives

V&E

Y - 1X = - >

[- 21q exp 16,5 +

(7 + 1) exp(ife - Tay) - (7 - 1a) exp(1651 + 0o )]

If the real and imaginary parts are separated,

OOV
Y = - [Zq sin Gup + (7 cos 6,7 - Q sin 6,1) exp(- 0wy ) -
(7 cos 6wy + 4 8in €uy) expcxbl] (3.86)
Ovong
X = - [ Zq cos O + (7 8ln 6,7 + @ cos eai) exp(- O 1) =

(7 sin 6oy - Q cos B ) expdml] (3.7)

The velocity on the contour of the blade is assumed to remain
finite; the total-pressure force on the blade will then be perpen-
dicular to the velocity and therefore X = 0, that 1s,
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(7 sin 65 + Q@ cOs 6yy) exp(- °°°l) -
(7 sin 6,7 - q co8 6,7) 6Xp Opy = 2q cos @5 (3.8)

Thus the pressure force of the gas on a blade of the cascade is
by equations (3.6) and (2.8) equal to

POV, V. : V.. 2\P
1 2 o] .
- — h{-— 2f1 - = sin(X\ + 65;) sin 6op +

2\B
Vocl *
a,) gin (A + 64) sin eml] exp (- Og ) -

[cos(?\+ 6wy ) COS 6q + (l -

2\B
V.
[cos(?x+ By ) COS By = (l - :;) sin (A + 6x) sin Ga,l] exp Oml}

(3.9)
If in equation (3.9) B 1is set equal to O and the
magnitude Oq, determined by equations (1.4), is correspondingly
replaced by Tl
T V.
o - Lil:.:':.logﬁ}.=log—-—ml
o] 27 2 TeoD Veup
L
the formula for the pressure 1s cbtained for the case of an ideal
fluid (reference 2).
In order to determine the angle A, entering equation (3.9),
between the axis of the cascade and the x-axis, the ratio (2.6)
and the values of Y and ¢q from equations (2.8) are used. Thus
2\B .
. Ve 2 cose - (M+M)
ctg(M + le) =1 (l - 2@) YR (3.10)

In order to compute the length of a cascade blade, equation (1.5)
is used. Replacing 49 by d4f gilves

az = & (a L-tel€ Lt - ei€> (t - o2 (t - e71€) (¢ - t~Dat
n el€. ¢ tel€ - 1/ (4 - ta) (t - E) (b - tar 1) (v - E~1)
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This expréssibn may be put in the form

dz = %? g (t)dt + ﬂf.gz(t)dt (3.11)
where
' 1€ (gog-1€)2(t-p-1
g, (t) = ol€(t-e-1€)2(t-t" )

(t-te) (b=t 1) (£-E5) (£-E,72)

o-l€ (t-01€)2(£-171)
(t-t) (£-t 1) (t-t) (t-E_ 1)

1}

g5 (t)

The expansions of g)(t) and g2(t) into the sum of simple
fractions are of the form

A B c Dy Ey
g ft) = Vo2 v - + T + < (v =1,2)
t-tow t-Te t-ter t-te”
where
Ay =Cy = r+ig exp(1657 - O )
21iq
2ig
El = -e-ie
C, = A, = 2¥1d o -1
1 2 5ia %P (Gey 601 )
Dy =By = 12; exp(- 16x) -%w1)
EZ - _ei€

These expressions for the coefficlents are obtained if the
following relations are used:
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1-tgele

exp iu&& = -
elc -'ton

_alc _e-le€
(te-01€ ) (tyme™1€) g

(borfe) (fu-frl) 210

l_.'t'meie

el€ “Eco

exp iWgy =

(Bore ~1€) (F-el€)

(Tarto) (Fotee )

= 1g-7
2iq

If equation (3.11) is integrated over the upper semicircle in
the t-plane in a counterclockwise direction and if relation
z(-1)-z(1) = ! 1is used, the following expression for the length of
a cascade blade is obtained:

- -1
-1-t -1-t -1l-t
1 =881 -2+ Bylg 4+ Clg —ZF_ 4
w |t 1-t ey . -1
Yoo =) l-tg
w1 F -1
i oo
Dylg —— 5 + Eil8 (-0 +
1- (-3
-1-t _1-im e+ -1
b o 1=t
9’;{' Azlg Tt + leg 'E + Czlg ® T +
0 - '!-tm-
gt
Dolg + Eplg (-1)
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-1 T -1 .
ottt T T4l
=92 (A + Cq)lg =" + (B} + D})ig ——— +
A1 1 ” 1 1 — -1 -
3 I el £t
b ’l+1
(A, + By + Eq)1g(-1) | + 42| (&5 + Co)lg ——n *
1 1 1 2
b1 -1
te T-1
T ta
(B2 + Do)lg —°—°_—l-—— + (Ag + By + Ep)lg (-1)
-] :
oo

R.
= ié (Al + Bl 4+ Cl + Dl)lg ——1; ~+
b1g RZ

ic (A + Gy - By =~ D) + (A + By + El)'ni +

b R
L1 (A + By +Cy +Dy)lg L+
Rz

ia (Al + Cl - Bl - Dl) + (Cl +Dl + Ez) i

The magnitudes Ry, R, and a that enter this equation are

shown in figure 4. Substituting the values of the coefficients and
maekling use of equation (3.8) g’ves the following expression for
the length of a blade:

R
1=1+29 (a+0b) cos Op 18 L
T Ra

% (a + b)[(y cos Oy - @ sin Ox) exp(- Jgy) +

(7 cos By + @ 8in Boq ) exp0m1]+
-3-‘—5-13 [(7 coS By - Q4 8in 6os) exp(- °°°l)—

(7 cos By + Q sin 64) exp °m1]+ Qa sin ggp
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The formula for the length of a blade in the case of an 1deal fluid
(reference 2) is obtained from the preceding equation for B =0
if

8 = =2
oz
b =0

q = -Vy h sin (M + 9001)

¥y =V hcos (A+ Qw1)

o
Vool

o] = 1g —=
o] Voo >
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Figure 3.

Figure 4,
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